REDUCTION OF SYMPLECTIC GROUPOIDS AND QUOTIENTS OF QUASI-POISSON MANIFOLDS
نویسندگان
چکیده
In this work, we study the integrability of quotients quasi-Poisson manifolds. Our approach allows us to put several classical results about Poisson in a common framework. By categorifying one already known methods reducing symplectic groupoids also describe double groupoids, which integrate recently introduced groupoid structures on gauge groupoids.
منابع مشابه
Symplectic Groupoids and Poisson Manifolds
0. Introduction. A symplectic groupoid is a manifold T with a partially defined multiplication (satisfying certain axioms) and a compatible symplectic structure. The identity elements in T turn out to form a Poisson manifold To? and the correspondence between symplectic groupoids and Poisson manifolds is a natural extension of the one between Lie groups and Lie algebras. As with Lie groups, und...
متن کاملQuasi-hamiltonian Quotients as Disjoint Unions of Symplectic Manifolds
The main result of this paper is Theorem 2.13 which says that the quotient μ({1})/U associated to a quasi-hamiltonian space (M,ω, μ : M → U) has a symplectic structure even when 1 is not a regular value of the momentum map μ. Namely, it is a disjoint union of symplectic manifolds of possibly different dimensions, which generalizes the result of Alekseev, Malkin and Meinrenken in [AMM98]. We ill...
متن کاملDeformation Quantization of Pseudo Symplectic(Poisson) Groupoids
We introduce a new kind of groupoid—a pseudo étale groupoid, which provides many interesting examples of noncommutative Poisson algebras as defined by Block, Getzler, and Xu. Following the idea that symplectic and Poisson geometries are the semiclassical limits of the corresponding quantum geometries, we quantize these noncommutative Poisson manifolds in the framework of deformation quantizatio...
متن کاملPoisson Sigma Models and Symplectic Groupoids
We consider the Poisson sigma model associated to a Poisson manifold. The perturbative quantization of this model yields the Kontsevich star product formula. We study here the classical model in the Hamiltonian formalism. The phase space is the space of leaves of a Hamiltonian foliation and has a natural groupoid structure. If it is a manifold then it is a symplectic groupoid for the given Pois...
متن کاملPoisson Fibrations and Fibered Symplectic Groupoids
We show that Poisson fibrations integrate to a special kind of symplectic fibrations, called fibered symplectic groupoids.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transformation Groups
سال: 2022
ISSN: ['1531-586X', '1083-4362']
DOI: https://doi.org/10.1007/s00031-022-09700-4